
JOURNAL OF COMPUTATIONAL PHYSICS 51, 241-249 (1983)

A Fast Processor for Monte-Carlo Simulation

ROBERT B. PEARSON*,JOHN L. RKHARDSON+,AND DOUG TOUSSAINT~

* Institute for Theoretical Phvsics, ‘Department of Electrical and Computer Engineering,
t Institute for Theoretical Phvsics and Department of Physics, University of California. Santa Barbara,

California 93106

Received September 13, 1982

A special purpose processor for Monte-Carlo simulation of the three-dimensional Ismg
model is described. This device performs the Monte-Carlo updating algorithm on 25 million
spins per second on a 64’ lattice. The device is also capable of measuring the energy and
magnetization of the system or passing the updated lattice to a host computer.

1. INTRODUCTION

The Monte-Carlo method has prove to be an extremely valuable tool for the study
of statistical mechanical systems and, more recently, for the study of euclidean
quantum field theories [l-3]. However, when high accuracy is required or complex
systems are studied, one is severely limited by the amount of computing time that is
needed. Large amounts of computing time are necessary because the accuracy
obtained in a Monte-Carlo study is proportional to l/p, where N is the number of
iterations of the algorithm. For many computations that we wish to do, for example,
non-abelian gauge theories on large lattices, the cost of performing the computation
on a general purpose computer is prohibitive. Part of this problem arises from the
nature of a general purpose machine: because it is designed to handle a large class of
problems, it does not carry out a particular calculation with maximum efficiency.

In this paper we describe a special purpose processor for performing Monte-Carlo
simulation on a particular problem: the three-dimensional Ising model. Despite its
modest cost, this machine is faster than the fastest supercomputers on the one
particular problem for which it was designed. The architecture of this machine can be
generalized to Monte-Carlo simulation of other models or to other problems
involving iterative algorithms on quantities defined on lattices, such as solutions to
partial differential equations.

We begin by reviewing the Monte-Carlo algorithm for the Ising model, with
emphasis on how the computation is done. We then describe the special purpose
machine which carries out this algorithm.

241 0021.9991183 $3.00
Copyright me 1983 by Academtc Press, Inc

All rights of reproductmn I” any form reserved.

242 PEARSON, RICHARDSON. AND TOUSSAINT

2. THE MONTE-CARLO ALGORITHM

The Hamiltonian for the Ising model considered here is

H=-J \‘ S,Si-h:S,.
(77, I

(1)

where the spins are arranged on a cubic lattice and take the values f 1, and the first
sum in (1) is over all pairs of nearest neighbors. We are interested in computing
expectation values of operators such as the magnetization and correlation functions.
These expectation values are defined by

where by a configuration we mean a given value (+I) for every spin in the system.
The physical meaning of (2) is that the probability for the system to be in any
configuration is proportional to exp(-H(configuration)/kT), and the expectation
value of an operator is the average of this operator over all configurations, weighted
by the probability of each configuration. The idea of Monte-Carlo simulation is to
construct a computer model of the system of interest, and carry out a stochastic
algorithm which is designed to produce configurations of the model system with the
above probability. Physical quantities are measured by averaging over this set of con-
figurations.

The basic step of one such algorithm is to consider one particular spin, look up the
current values of its six nearest neighbors, and set the spin under consideration to +l
with probability

p=e (Jrp~,S,th,lkT/(e’J~f ,S,th)/k7 + e-‘J’: ,S,+h)/kT).
(3)

or to -1 with probability 1 -p. This is done for every spin in the system, always
using the updated values for the neighboring spins. This sweep is then repeated many
times. It can be shown that this will produce a sample that will approach the correct
equilibrium distribution. Monte-Carlo simulation consists of repeating this algorithm,
stopping at intervals to measure the quantities of interest. The results of many
measurements are averaged together to give an estimate of the expectation values of
the operators.

For J/kT close to the critical value at which the phase transition occurs
configurations of the model change very slowly, so it is best to make many sweeps
through the lattice with the updating algorithm between measurements of the quan-
tities of interest. For example, at /I = 0.22 12, where /I, = 0.2217, the relaxation time
of a 643 lattice is about 1700 Monte-Carlo sweeps through the lattice. This means
that the great bulk of the computational effort consists of repeating the simple
updating algorithm for all the spins in the lattice. Therefore it is attractive to
construct a special purpose device to perform the updatings and make some of the
simplest measurements.

PROCESSORFORMONTE-CARLO SIMULATION 243

3. DESIGN OF AN ISING MODEL PROCESSOR

The first step in performing the updating algorithm for an Ising spin is to look up
the current values of the neighboring spins. On a general purpose computer this
requires a number of address computations and memory accesses. In fact, for the
Ising model, a large fraction of the computer’s time is devoted to finding the needed
data. Our approach to this problem is to buiId a special memory which automatically
presents the correct data to the processor. Here we are taking advantage of the fact
that we know infinitely far ahead what data will be needed, and in what order they
will be needed. As we move to the right along a row of the lattice updating spins. the
spins needed at each step are just one step to the right of those spins needed at the
previous step. Thus we need to exarnine’six locations in memory. which are arranged
in a rigid pattern that moves through the lattice.

For a simplified conceptual version of the memory, imagine that the spins are
stored in a one-dimensional cyclic shift register, as illustrated in Fig. 1. The outputs
of the six bits of this shift register corresponding to the nearest neighbors of the spin
to be updated are connected to the processor by wires. After the processor computes
an updated spin and inserts it into the shift register, the shift register is clocked and
every bit moves one step counterclockwise. The nearest neighbors of the next spin to
be updated are then in position.

By slightly skewing the simple periodic boundary conditions as shown in Fig. 2, we
avoid having to make special provisions for spins at the edge of the lattice. Because
we are interested in the properties of the system in the thermodynamic, or in~nite
volume, limit, this minor change in the boundary conditions is of no consequence to
the physics. (In fact, the use of skewed periodic boundary conditions is common
practice in Monte-Carlo simulation.)

Of course the reader has noticed that a number of processors could be placed
around the ring in Fig. 1, thus increasing the speed of the simulation. The device we
have built uses only one processor. However, because this processor is much faster
than the components used in the shift register, we multiplex the processor among

FIG. 1, Conceptual design of a Monte-Carlo processor.

244 PEARSON, RICHARDSON, AND TOUSSAINT

I
I t -----

cl), 7 3 t
2

0 I
15 / 0 3 I

0 .
II :z 13 :4 I$ 8

0 . .
7 8 G :o II

~

pz

0 . .
;:

.
3 4 5 7 2

-_--

FIG. 2. Skewed boundary conditions in two dimensions. The right-hand neighbor of spin 3 is spin 4.
rather than spin 0 as is in ordinary periodic boundary conditions.

sixteen different places in the lattice. The best way to visualize this is to imagine the
(one dimensional) lattice folded back on itself as shown in Fig. 3. The shift register or
first-in first-out memory (FIFO) is now 16 bits wide, with six multiplexed taps, and a
permutation of the connecting wires at some point. Because large and fairly fast
RAMS are readily available, we actually implement the segments of the shift register
by attaching a reseting counter to the address inputs of a RAM. To clock this FIFO,
we write the input into the RAM, increment the counter, then read from the RAM to
the output of the segment. When the counter overflows, it is automatically reset to the
two’s complement of the length of the FIFO.

Multiplexing the processor among different locations in the lattice also allows us to
design a faster processor. If the processor were used in only one location, as in Fig. 1,
it would be necessary to complete the processing of each spin before beginning the

FIG. 3. A single processor multiplexed among several points m the latttce.

MULTIPLEX

PROCESSOR

PROCESSOR FOR MONTE-CARLO SIMULATION

NEIGHBORING SPINS

245

UPDATED SPIN

FIG. 4. A processor for updating the Ising model.

next, because the next spin requires the updated current spin as input. However, with
multiplexing, we do not need the result of the current computation until 15 spins from
distant parts of the lattice have been computed. This allows us to pipeline the
processor. This means that the processor is divided into stages corresponding to the
stages in the computation of an updated spin. When the first stage of the processor
has completed its work on one spin, the result is passed on to the next stage. The first
stage then begins working on the next stage.

The processor for the Ising model is quite simple. Conceptually it is a black box

NEIGHBORING SPINS

ADDRUS

RAM

24

I
LATCH 3

LATCH 4 3
IO

SECOND COMPARE

FIG. 5. Block diagram of the processor.

246 PEARSON. RICHARDSON, AND TOUSSAINT

with six input bits and one output bit as shown in Fig. 4. The six neighboring spins.
represented by zeros or ones, are used to index a table of probabilities for the
resulting spin to be up (Eq. (3)). Because a small amount of decoding of the input is
necessary, this accounts for only two steps in the pipeline. The appropriate
probability is compared to a pseudorandom number between zero and one, and the
results of this comparison is the new value of the spin. This comparison requires
another two steps in the pipeline. A block diagram of the processor is illustrated in
Fig. 5.

The pseudorandom number is generated by a separate circuit working in parallel
with the processor. The algorithm used is one of the feedback shift register type or
FSR 14, 5 1. The generator we use consists of a 127 bit shift register with feedback on
the input of the first bit. If we denote by x,, II = 0. I,..., 126, the nth bit of the
sequence, the FSR algorithm we use is

x,= k-1?7+Xn-whll”dZ~ (4)

The period of this bit sequence is exactly 2”’ - 1 161.
To generate 24 bit random numbers from this 127 bit sequence we choose 24 bits

out of the 127 at intervals of 24 clock pulses. The circuit we employ for this
algorithm is illustrated in Fig. 6. It is arranged so that 24 bits in the sequence are
generated each clock cycle.

Originally the processor was designed and constructed with a different random
number generator. This generator was based on a linear congruence algorithm 18 1,
but when tests were performed it was discovered that there were very small but none

FEEDBACK
CONNECTIONS

CLOCK

FIG. 6. Block diagram of the pseudorandom number generator. The feedback connectlons (not
shown) to bit n in the first latch are from bits n + 127 - 24 and n + 97 - 24.

PROCESSOR FOR MONTE-CARLO SIMULATION 241

the less significant discrepancies with known results. Then will be detailed later in the
paper but it points out the importance of a good random number generator for doing
high statistics Monte-Carlo simulations.

The speed at which this processor can run is limited by the slowest step in the
pipeline, which turns out to be looking up the probabilities in the table memory. To
store this table we use small but fast RAM chips with an access time of 20 nsec. In
addition the latches have a typical propagation delay of 5.5 nsec. and a setup time of
2 nsec. Adding a little for wires and variations in components the processor has a
cycle time of 40 nsec which means we can update 25 million spins per second.

In addition to the Monte-Carlo updating circuitry. we have included circuitry for
measuring the magnetization and energy of the system. To measure other quantities
of interest we must send the sample systems to a computer for analysis. In our case
the computer is a VAX-l l/780. In order to match the data rate of the VAX interface
we must slow our processor to around 10 million spins per second when we are
copying the spins into the VAX. Because we make many updating sweeps between
each measurement in order to get a reasonably independent sample, this does not
amount to a serious loss in speed.

Obviously this is a special purpose computing device designed to solve only one
problem efficiently. We are able to adjust the size of the lattice by changing the size
of the FIFO segments (adjustable by switches). Also, by changing the probabilities in
the processor table, we can vary the coupling (an obvious necessity), or include
anisotropic couplings, or include a magnetic field.

In order to demonstrate that the processor was correctly built and that there were
no flaws in the algorithm, the processor was run against a full scale simulation in
software and was compared against exactly known properties in two and three
dimensions. Initially, as mentioned above, there were some troubling discrepancies.
Specifically the average magnetization in the high temperature phase and at zero
magnetic field of the Ising model is strictly zero. However, the results of long runs
with different addends in the original linear congruence random number generator
produced magnetizations as large as 0.01 which were reproducible for different
random number seeds. As a result the random number generator was redesigned as
described above. When the tests were redone the results were consistent with zero.

It is possible to use the processor to simulate the two-dimensional Ising model by
the simple technique of setting the coupling strength in the x direction to zero. In this

TABLE I

0.432 0.662896 zt 0.000060 0.662846
0.436 0.68465 1 i 0.000075 0.684739
0.440 0.708114 f 0.000067 0.70806 1
0.444 0.729694 f 0.000059 0.729709
0.448 0.748260 zk 0.000048 0.748278

248 PEARSON, RICHARDSON, AND TOUSSAINT

MAGNETIZATION
AND

ENERGY -e-
METERS

CONTROL WIRES

TO PROCESSOR

TO PROCESSOR

FIG. 7. Block diagram of the complete device.

case the three-dimensional lattice appears as 64 independent two-dimensional lattices
which are all being updated simultaneously by the processor. When we compare
results with the exactly known values of the energy for this case we obtain the results
of Table I. These results represent a total of 64,000,OOO sweeps of 64 by 64 lattices
per data point. The energy was measured every 100 sweeps on each of the 64 lattices.
Errors were estimated by computing the standard deviation of the mean of the data
partitioned into 100 blocks. Each block is sufficiently large to preclude any
correlations. The results are completely consistent with the exact solution 19 1.

The device described here is now in full operation at Santa Barbara (see Fig. 7).
Some of the initial results from our processor are displayed in Fig. 8, where we have
plotted the specific heat, the susceptibility, and the magnetization of the system. The
expected behavior near the phase transition can be seen in any one of these plots.
Another processor for the Ising model has been built at the University of Technology
in Delft [7].

It should be clear that the ideas described here can easily be extended to .Monte-
Carlo studies of other models, perhaps even including Euclidean lattice gauge
theories, or to other problems involving iterative algorithms on lattices. Examples
include relaxation methods for elliptic partial differential equations. numerical

J/KT J/KT J/KT

FIG. 8. Plots of the magnetization. suscepttbility. and specific heat versus J/kT.

PROCESSORFORMONTE-CARLO SIMULATION 249

integration of the Navier-Stokes equation, or simulation of time-dependent
phenomena using the Langevin equation.

ACKNOWLEDGMENTS

We thank Mark Lowenstine, Cohn Matlala. Ralph Ursoleo. and Dale Berger of the UCSB Physics
Department electronics shop for their work on this device. We also thank John Bruno, Jose Fulco, and
Doug Scalapino for their support and encouragement, and Glenn Culler, Dave Probert, and Roberto
Suaya for helpful advice. This work was supported by the National Science Foundation under Grant
Numbers PHY77-28084, PHY80-18938. and DMR80-01492, and by the Physics Department and
Computer Systems Laboratory at UCSB.

REFERENCES

1. N. METROPOLIS. A. ROSENBLUTH. M. ROSENBLUTH, A. TELLER, AND E. TELLER, J. Chem. Phys. 21
(1953), 1087.

2. For a review of Monte-Carlo methods in statistical physics, see K. BINDEK, in “Phase TransItions
and Critical Phenomena” (C. Domb and M. S. Green. Eds.), Vol. 5B. Academic Press, New York.
1976.

3. M. CREUTZ. L. JACOBS, AND C. REBBI, Phys. Rev. Left. 42 (1979). 1390; Phys. Rev. D 20 (1979),
1915.

4. R. C. TAUSWORTHE, Math. Comput. 19 (1965), 201.
5. S. W. GOLOMB, “Shift Register Sequences,” Holden-Day, San Francisco, 1967.
6. The values of the feedback offsets (127 and 97 in our case) which guarantee maximum period are

tabulated in N. ZEILER, Znform. Control 15 (1969), 69.
7. A. HOOGLAND, J. SPAA, 8. SELMAN, AND A. COMPAGNER, J. Comput. Phys. 51 (l983), 250.
8. D. E. KNUTH. “The Art of Computer Programming,” Vol. 2, Addison-Wesley, Reading, Mass., 1969.
9. C. J. THOMPSON, “Mathematical Statistical Mechanics,” Macmillan. New York, 1972.

